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ABSTRACT

Fractional Fourier transform (FRFT) is a generalization of the Fourier transform,
rediscovered many times over the past 100 years. In this paper, we provide an overview
of recent contributions pertaining to the FRFT. Specifically, the paper is geared toward
signal processing practitioners by emphasizing the practical digital realizations and
applications of the FRFT. It discusses three major topics. First, the manuscripts relates the
FRFT to other mathematical transforms. Second, it discusses various approaches for
practical realizations of the FRFT. Third, we overview the practical applications of the
FRFT. From these discussions, we can clearly state that the FRFT is closely related to other
mathematical transforms, such as time-frequency and linear canonical transforms.
Nevertheless, we still feel that major contributions are expected in the field of the digital
realizations and its applications, especially, since many digital realizations of the FRFT still
lack properties of the continuous FRFT. Overall, the FRFT is a valuable signal processing
tool. Its practical applications are expected to grow significantly in years to come, given

that the FRFT offers many advantages over the traditional Fourier analysis.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In very simple terms, the fractional Fourier transform
(FRFT) is a generalization of the ordinary Fourier transform
[1]. Specifically, the FRFT implements the so-called order
parameter o which acts on the ordinary Fourier transform
operator. In other words, the «-th order fractional Fourier
transform represents the o«-th power of the ordinary
Fourier transform operator. When o = 7r/2, we obtain the
Fourier transform, while for o =0, we obtain the signal
itself. Any intermediate value of « (0 < o < t/2) produces a
signal representation that can be considered as a rotated
time-frequency representation of the signal [2,3].

Interestingly enough, the idea of the fractional powers of
the Fourier operator has been “discovered” several times in
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the literature. Initially, the idea appeared in the mathematical
literature between the two world wars (e.g., [4,5]). More
publications relating to this idea appeared after the second
world war, however they were sporadic (e.g. [6]). The idea of
fractional Fourier operator re-gains a momentum in 1980s
with publications by Namias (e.g. [7]). Following Namias’
contributions, a large number of papers appeared in the
literature during 1990s tying the concept of the fractional
Fourier operators to many other fields (e.g., time-frequency
analysis as described in [2]). We have also witnessed a
number of recent contributions attempting to understand
the practical applications of the FRFT beyond optics.

The main goal of this publication is to provide an
overview of recent developments regarding the FRFT and
its applications. Although a number of publications review-
ing the FRFT has also appeared in recent years (e.g., [1,8,9]),
some of these publications are geared toward explaining
the mathematical eloquence behind the FRFT. Our goal is to
simplify the theory behind the FRFT and provide an over-
view suitable for a signal processing practitioner. In
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particular, we emphasize the practicality of the FRFT by
devoting a significant part of this manuscript to its discrete
realizations and applications. By attracting more practi-
tioners to this eloquent mathematical concept, we hope to
foster more applications since the FRFT offers many valu-
able properties, which otherwise were not available with
traditional tools (e.g., the Fourier transform).

The paper is organized as follows: Section 2 introduces
the concept of FRFT and relates the transform to other
mathematical representations. In Section 3, we discuss
various implementation approaches for discrete signals.
Section 4 provides an overview of some FRFT applications,
while in Section 5, we provide concluding remarks along
with an outline of possible future directions.

2. The fractional Fourier transform

The fractional Fourier transform (FRFT) is a linear
operator defined as [10-13]

—+ 00
XU = Fo(x(0)) = / X(OKy(t,u) dt )

—0o0

with K,(t,u) representing the kernel function defined as

l—ic:toc if o is not multiple of 7
Ky (t,u) = ><ej(112/Z)C()toce/’(tz/Z)cota—jutcscac
o(t—u) if oo is a multiple of 27
o(t+u) if o+ is a multiple of 27

@

and J(¢) representing the Dirac function. Throughout the paper
we use F, to denote the operator associated with
the FRFT. It should be noted that we adopted notation for
the FRFT found in signal processing literature. In particular, we
denote the rotation angle by .. Mathematicians usually denote
the rotation angle by a, where a =2¢/7. It is important to
point out that various o values provide transformations with
distinctive properties. Hence, oo can be adjusted in many
applications to provide enhanced results in comparison to
other existing methods. Additional computational complexity
associated with such optimization efforts is often acceptable.

Given the properties of the kernel, Eq. (1) is equal to x(t)
when o is a multiple of 27, and is equal to x(—t) when o+ 7
is a multiple of 27. Some properties associated with the
FRFT are summarized as follows [1,14]:

1. The standard Fourier transform is a special case of the
FRFT with a rotation angle « = m/2.

2. Fois the identity operator, i.e., F(x(t)) = x(t). The same
can be stated for 75 .

3. The FRFT is a linear operator, i.e., Fy(3,CXk(b) =
D kCkF (X (D).

4. The FRFT adheres to commutativity (i.e., Fo, Fo, = Fy,
Fq,)and associativity (i.e., (Fyy Fuy ) F oy = Foy (Fay Foy))-

5. Successive applications of the FRFT of various orders is
equal to a single application of the FRFT whose order is
equal to the sum of individual orders (e.g., Fy, Fo, =
Fon+or)

6. Inverse FRFT is obtained by applying F_, to the
transformed signal (i.e., FyF_y = Fo).

7. FRFT satisfies the Parseval theorem: <(x(t),y(t)> =
(Ka(u), Yo (u) ).

Additional properties of the FRFT and some transform
pairs are listed in Tables 1 and 2. These properties clearly
indicate that the FRFT is an extension of the ordinary
Fourier transform. More extensive descriptions and proofs
of these properties, along with additional transform pairs,
can be found in other references (e.g., [1,10-12]). The FRFTs
of a few sample signals are shown in Fig. 1.

A particularly interesting case of the above listed
properties is the fact that it can be shown that the FRFT
of a product of two signals, y(t) = x(t) w(t), can be shown to
be equal to [15]:

Yo (u) =

.2 + oo
If/szc—gcl ex (Ju ;otoc) /xa(p)W((u—v)CSCO‘)
T

2
xexp <—]U czotoc>du A3)

where W(v) is the Fourier transform of w(t). In other words,
the resultant FRFT is equal to convolution of the FRFT of x(t)
with the Fourier transform of w(t) multiplied by a chirp
function. A similar expression can be derived for convolu-
tion of two signals (y(t) = x(t) * w(t)). In particular, con-
volution of two signals in time domain equals to [15]:

)
Y, (u) = |seco|exp (_]u tzanoz

+oo
) /Xy(u)w((u—u)secoc)

)
xexp (JU tzana> dv 4)

Table 1
Properties of the FRFT.

Signal FRFT

X(t—1) exp(j(t?/2)sinocoso—jutsino)X, (U—Tcoso)
x(t)exp(jvt) exp(—jv?(sinocose)/2 +jucoso) Xy (u—vsina)

x(t)t ucosoX, (u)+jsinoXyu)

x(t)/t —jsecoexp(j(u? /2)cota) [* x(z)exp(—j(z? /2)cota) dz
x(ct) 1—jcota

exp(j(u?/2)coto(1—(cos? f/cos?a))) X (g::zg )

c2—jcoto
where cotf = coto/c?
X(t) X (u)cosa +jusinaX, (u)
Jix(tydt  secuexp(—j(u?/2)tana) [, X,(2)exp(j(z?/2)tan) dz if
a—m/2 is not a multiple of ©

Table 2
FRFT of some basic functions.

Signal FRFT
1 /1 +jtancexp(—j(u? /2)tanw)
ot—1 g
= 1 écrz)mexp(j((f2 +Uu?)/2)coto—jut csc o)
exp(—t?/2) exp(—u?/2)
exp(jnt) /1 +jtancexp(j((n? +u?)/2)tano—junseco)

exp(c(—t?/2)) 1—jcoto

i12 2_ 2 2
c—jcotaEXp(’(u /2)(c=—1)coto/(c* +cot*w))

exp(—c(u?/2)csc? o/(c® + cot? o))
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Fig. 1. Sample signals and their theoretical FRFTs (¢ = t/4): (a) time domain representation of the Dirac function; (b) FRFT of the Dirac function; (c) time
domain representation of the unit function; (d) FRFT of the unit function; (e) time domain representation of the exponential function and (f) FRFT of the
exponential function. Solid lines represent real parts, while dashed lines represent imaginary parts.

which shows that the FRFT of a convolution can therefore
be obtained by taking the FRFT of one of the signals,
multiplying by a chirp, convolving with a scaled version
of the other signal, and multiplying again by a chirp and by
a scale factor. These two rules are of particular interests
when developing a time-frequency representation based
on the FRFT.

Our next task is to understand the relationship between
the FRFT and other mathematical representations. First, we
begin by establishing the relationships with the ordinary
Fourier transform. Then, we establish relationships with
various time-frequency representations and linear cano-
nical analysis.

2.1. FRFT as fractional powers of Fourier transform

Namias provided an elegant generalization of the Four-
ier transform to the FRFT [7], by deriving the FRFT from the
eigenfunctions of the Fourier transform. In fact, Namias
used the fact that the Hermite-Gaussian functions (¢,(t))
are eigenfunctions of the Fourier transform and showed
that the «-th order FRFT shares the eigenfunctions of the
Fourier transform. More specifically, the eigenvalues of the
FRFT are the o-th root of the eigenvalues of the Fourier
transform [7]:

Faulpy(t)) = exp(—jork) iy (t) (5)

Therefore, if we expand a signal in terms of these eigen-
functions, we obtained

X(t)= > () (6)
k=0

where
+00

a= | dr(Dx(t) dt (7)

By applying the fractional operator (F,(-)) to both sides
of (6), we get

FouX(O) =Y ckFuley(t)
k=0

= 3 cexp(—jak)pi(w)

k=0

= [ 3 exp=iohoghu(0x() e ®)
k=0

From the above equation, it is clear that the kernel function
can be defined as

Ky(t,u) =" exp(—jok)ey ()i (t) 9)
k=0

The above equation can be considered as the spectral
decomposition of the kernel function of FRFT [1]. Using
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the Mehler formula, Namias in fact shows that we obtain
the FRFT from (8) [7].

2.2. Relations to time—frequency representations

To understand the relationship between the FRFT and
various time-frequency analyses, we consider the relation-
ship between the ambiguity function and the FRFT. The
ambiguity function (AF) of a signal, x(t), is

+ 00
AFx(t,f) = / x(H— %)x* (r— %) exp(—j2ntf) dt (10)

By introducing rotation of the AF by using the following
transformation:

t = Rcosa a1

f =Rsina (12)

with R € (—o00,00) and « € [0,7), and redefining the AF as
FRAF(R,01) = AFx(Rcoso, Rsina), it becomes obvious that the
FRFT corresponds to a rotation of the AF [16]. In particular,
it is easy to prove that the fractional power spectra is the
Fourier transform of the AF:

+ o0
FRAF (R0~ 3) = / X, (w)lexp(i27tRu) du 13)

Using this relationship, the connection between the local
fractional FT moments and the angle derivative of the
fractional power spectra has been established in [17].
Furthermore, it can be easily generalized that the FRFT
corresponds to rotation of a class of time-frequency
representations (TFRs) as along as ‘I’(t,j):}'glf_r_,f
{¢(0,7)} is rotational symmetric [18-21], where ¢(0,7) is
a two-dimensional kernel function. For example, the FRFT
corresponds to the rotation of the Wigner distribution
(WD) in the time-frequency plane [20,22-25]:

WD, xt))(t.f) = WDx(tcoso—f sina, usino. + f cosor) (14)

The relationship between FRFT and Radon-Wigner dis-
tribution (RWD) (e.g., [26]) is studied in [23,27], and it was
shown that the RWD is the squared modulus of the FRFT:

RWDIx(t)] = | F4[X(0)] > (15)

Additionally, we should point out that the FRFT could be
potentially useful for obtaining time-frequency distributions
without cross-terms. For example, WD and AF exhibit different

a b

behaviors when considering signals with multiple compo-
nents. Namely, the WD has signal components (i.e., auto-
terms) concentrated around their instantaneous frequencies
and group delays, while interferences (cross-terms) are located
between these components. On the other hand, the AF has the
auto-terms concentrated around the origin while the inter-
ferences are dislocated from the origin. The connection
between these two time-frequency representations is the
2D Fourier transform:

WDX(t-w):FT‘Eﬂw,Gﬁt{AFX(QvT)} (16)

However, interesting results are obtained when we use the 2D
FRFT instead of the 2D Fourier transform in (16). Specifically, it
is possible to separate all auto- and cross-terms in the time-
frequency plane for some classes of signals. To illustrate this
behavior, let us considered a signal with four components
concentrated in the TF plane around (t,f)=( + 0.5, + 6), and the
signal is defined as

x(t) = [exp(—60(t—0.5)%) + exp(—60(t +0.5)?)]
x[exp(j127t) +exp(—j12mt)] 17)

with t € [-1,1]. The AF of this signal is depicted in Fig. 2(a). All
four auto-terms are located in the middle of the graph (i.e., the
origin of the ambiguity plane). Each of four horizontal and
vertical objects with respect to the origin represents two cross-
terms, while the corner objects represent single cross-terms. In
the case of the WD (Fig. 2(b)), the corner objects are auto-
terms, while the central object represents the four cross-terms.
The remaining objects contain two cross terms each. However,
all 16 components (4 auto terms and 12 cross-terms) are
clearly separated as shown in Fig. 2(c) when we used the FRFT
operator with oo = 0.5 in (16).

2.2.1. Local polynomial Fourier transform

It is also of our interest to establish the relationship
between the FRFT and the local polynomial Fourier trans-
form (LPFT) [28,29]. First, we rewrite the FRFT as

+ o0

Fax(t)) = ll_éc;)taej(uz/Z)cota / XW(T)e]’(tz/Z)cota—jufcsw dt

—00

(18)

P

Yo

Fig. 2. Time-frequency representation of the four-component signal: (a) the AF; (b) the WD and (c) the FRFT of the AF.
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where x,,(7) = x(t +7)w(7). If the LPFT is given by [28,29]
+ 00
LPFT(t.f) = / X(t+T)W(T)exp(—j21tfi T—j2nfot? /2

— o —j2nfyT™ /M) dt (19)

where f=(f1.f,....fu), we set M=2, 2nf; =ucsco, and
2nf, =cota, then (18) can be expressed in terms of the
LPFT as

Fatuity) = [ LI g o prr £ ) 0)

From these equations it can be clearly seen that the LPFT
provides a broad generalization of the FRFT. Similar
observations have been made in [30]. Additionally, we
can relate the FRFT to the local polynomial periodogram
(LPP), which is defined as the squared magnitude of
the LPFT:

LPPx(t.f) = |ILPFTx(t,f)I? 1)

To understand the relationship between the FRFT and the
LPP, let us consider the LPP in more detail. The LPP is a
distribution belonging to the Cohen class of distributions
[28,29]. Its kernel is defined as the AF of wg(t)=w(t)
exp(—j2nfot? /2— - - —j27fytM /M!), which is a generaliza-
tion of the kernel used for the spectrogram (i.e., the squared
magnitude of the short-time Fourier transform), where the
kernel function is defined as the AF of w(t). This general-
ization stems from the fact that the short-time Fourier
transform is equal to the LPFT for M=1. Hence, to relate
the LPP to (20), let us consider the second order case
(i.e, M = 2):

+00
AFy,(t.f)= / w(‘H— %) w (‘c— é) exp(—j2mfy(t+1t/2)?
+j27fo(t—t/2)?—j2nfT) dt
+o0
= / w<‘c+ %) w* (r— %) exp(—janfytt—j2nft) dt

=AFy(t.f+27fot) (22)

where AF,(tf) is the ambiguity function of the used
window. Hence, the LPP rotates AF,(t,f) in the ambiguity
plane and can adjust the resulting time-frequency repre-
sentation according to the signal of interest. Similarly can
be stated for any localized form of the FRFT with a
proper selection of the o (angle) parameter.

Egs. (13)-(22) demonstrate that various coordinate
transformations have been implemented to relate the
FRFT to different transformations. This implies that any
coordinate transformation can be used, which is demon-
strated in the next section, where we relate the FRFT with
the linear canonical transform.

2.2.2. Other time-frequency representations and properties

A formal relationship between the wavelet transform
and the FRFT has also been established [31,32]. Specifically,
the FRFT kernels corresponding to different values of
o are closely related to the wavelet transform, which
can be obtained from the quadratic phase function in (2)
by scaling the coordinates and the amplitude [31,32].

Furthermore, fractional-Fourier-domain realizations of
several other time-frequency representations were also
introduced. These include realizations of the short-time
Fourier transform [33], the weighted WD (i.e., S-method)
[21,34], the Gabor expansion [35-38], and the tomography
time-frequency transform defined as the inverse Radon
transform of the FRFT [39].

Some of the properties associated with the time-
frequency analysis have been extended to the FRFT. For
example, marginals associated with time-frequency repre-
sentations based on the fractional Fourier transform were
examined [40] in analogy to marginals associated with
TFRs based on the standard Fourier transform. However, it
is not very clear what is a precise meaning of those
generalized marginals in comparison to the traditional
time and frequency marginals, which have a specific
meaning relating those quantities to the signal under
analysis. Several publications also investigated the uncer-
tainty principle in the fractional domain [41-44].

2.3. FRFT and linear canonical transform

The linear canonical transform (LCT) is a multipara-
meter integral transform and it represents a generalization
of many mathematical transformations (e.g., the Fourier
transform, FRFT, Fresnel transform) [1,45]. It should be
mentioned that the LCT is also called the affine Fourier
transform, the generalized Fresnel transform, the Collins
formula, the ABCD transform, or the almost Fourier and
almost Fresnel transformation [1,45]. The transformation is
useful in many practical applications such as optics, radar
system analysis, filter design, phase retrieval, and pattern
recognition [45].

The LCT is defined by [1,45,46]

+o0
1 . " .
izt /@by [ exp(—jut/b)

LCT 4(x(t)) = 5
xexp(jat” /(2b))x(t) dt, b#0
Jdexp(jc du? /2)x(du), b=0
(23)

where ad —bc=1, A = {a,b,c,d}. Using the above equation, it
is straightforward to show that the FRFT is the special case
of LCT where {a,b,c,d} = {cosa,sina, —sina,coso} with some
phase correction [1,45,46]. In other words,

]:oz(x(t)) =V exp(ja)LCT(cosa,sina,—sina,cosx)(x(t)) (24)

Additionally, other existing forms of the LCT can be related
to FRFT. For example, the simple coordinate transform
proposed in [16] when considered with parameters
{1,0,0,1} represents the form of the second order poly-
nomial Fourier transform with 27f, = o.. Furthermore, de
Bruijn proposed a form of the LCT in 1973 [6]. The
parameters of this distribution are {cosha,sinha,sinhe,
cosha} and its kernel function is defined as

Ky(t,u) = e—jn(uz/2)c0tha<e—jn(t2/2)cotha< +jmut/sinho (25)

sinho

which is quite similar to the FRFT. This transform shares
numerous properties of FRFT and it will be interesting to
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investigate a range of possible application of this coordi-
nate transform given recent advances in signal processing.

2.3.1. Coordinate transformation of other higher-order time-
frequency representations

The FRFT and LCT framework can be generalized for
some higher order time-frequency representations. Here,
we discuss the case of the L-Wigner distribution (L-WD)
introduced in [47] for achieving high concentration of the
time-frequency representations by eliminating the so-
called inner interferences. The L-WD can be defined as

LWD(t,f) = / ” x-(t+0.51/L)x*(t—0.51/L)exp(—j2rftt) dt

—0o0

(26)

Signal x,(t), producing the coordinate transform of the
L-WD LWD(at+bf,ct+df), can be defined for b#0 as

+ 00
Xa(t) = (1/27|b)y /- (/ XL(£)el /2 ~a) /b —jLit—w?)/2b du)

x l(1=d)/b)t? /2 27)

For rotation a = d = cosa and ¢ = —b = sing, the generalized
(L) form of the FRFT can be written as

. 120 [+ 7
X o(U) = (L(l _ZJCOtO:)) ( / XL(t,)ej(L/Z)cotc((u2 + t2)—jLutcsco df)
. p ]

(28)
The L-FRFT form can be evaluated using the FRFT as
1-+jcotor\ E-1/2L
_ 12
Xy =12 (L0

+00 +00 + 00

/m /x [G (if[lxa(wduf)

L 2_q2 L
w2 (3]_ w-) 5 <Lu— 3 u12>> (29)

i=1

For L=2, this relationship can be written as

. 1/4 [+%° 172
X5 (1) = (W%toc) (/ Xa(u+‘c)X;(u—‘c)e*fc°mz dr)

(30)
In general the L-FRFT of the k+m-th order can always be
expressed using the L-FRFT of k-th and m-th orders:

(k+m)(1 +jcotoc)> 1724em)

Xk+m,a((u): ( 2km

Foo 1/(k+m)
x < / XE AT /RXT (u—t/me(k+m/km)/2 dr)

(€3]

Similar coordinate transform can be determined for all
time-frequency representations depending on powers of
the signal local-autocorrelation x(t+t/2)x*(t—t/2). How-
ever, as far as we know there are no reported results for
other higher-order time-frequency representations such
as the polynomial WD (e.g., [48]) with the usage of several
auto-correlations.

2.3.2. Multiparameter coordinate transformations

Further generalizations of these transforms can be
achieved by introducing additional parameters. Mathema-
tically, such generalization would be given as

t’ t B t
M:{? ) f}“{lH ;Hf}[‘f]m 62
where t' and f’ represent the transformed coordinates.
These transformations correspond to more complex dis-
tortions in the time-frequency plane in comparison to the
FRFT and LPFT. The generalization, as shown in (32), could
be used to describe many existing transforms as well. For
example, when d=0, ¢#0 and all other parameters are
equal to zero, we obtain the LPFT for M=3, as shown in (19).

3. Practical realizations of FRFT

In order to practically realize the FRFT based operators,
filters, correlators, and other optical systems, we are
required to numerically calculate the FRFT [49]. As
depicted in the previous section, the FRFT is a subclass of
integral transformations characterized by quadratic com-
plex exponential kernels. These complex exponential
kernels often introduce very fast oscillations as shown in
Fig. 3. Hence, it is not possible to evaluate these transfor-
mations by direct numerical integration since these fast
oscillations require excessively large sampling rates.
A possible approach is to decompose these integral trans-
formations into sub-operations. However, we still require
significantly higher sampling rates than the Nyquist rate,
depending on the order and particular decomposition
employed. This results in greater time of computation,
larger numerical inaccuracies, and the need for more
memory. Therefore, the goal of this section is to provide
an overview of various practical implementations pro-
posed over the years. Given that we are concerned with
practical implementations using discrete signals, we only
consider approaches for the implementation of the so-
called discrete fractional Fourier transform (DFRFT). In
other words, for a discrete signal, x(n), of length N we
can define the DFRFT as follows:

Xy (n) = FyX(n) (33)

where F, is defined as the discrete fractional Fourier
transform matrix, X(n) is a vector representing the signal,
and X, (n) is a vector representing the DFRFT of the signal.
Therefore, the optical based implantations (e.g., [49]) are
beyond the scope of this paper. A summary of various
approaches is shown in Table 3.

3.1. DFRFT through sampling of FRFT

A straightforward approach for obtaining the DFRFT is
to sample the FRFT, since the sampling theorems for the
FRFT of bandlimited and time-limited signals follow from
those of the Shannon sampling theorem [14,50-55]. How-
ever, the resultant discrete transform may lose many
important properties (i.e., unitarity and reversibility). In
addition, the DFRFT obtained by direct sampling of the FRFT
lacks closed-form properties and is not additive, meaning
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Table 3
A summary of properties for main directions for obtaining the DFRFT.

Approach Advantages

Disadvantages

Sampling of FRFT
sampling theorem
Linear combination  Simple implementation of Fourier operators
Eigenvalue
decomposition

Maintains some important properties of the FRFT

Mostly straightforward application of the Shannon

May loose many important properties

The transform results do not match the result of the continuous
FRFT

Could lack the fast computation algorithm. Cannot be written in a
closed form

that its applications are very limited [56]. In order to
maintain some of the FRFT properties, a type of DFRFT,
derived as a special case of the continuous FRFT, was
proposed in [57]. Specifically, it was assumed that the input
function is a periodic, equally spaced impulse train. Since
this type of DFRFT is a special case of continuous FRFT,
many properties of the FRFT also exist and have the fast
algorithm. However, this type of DFRFT cannot be defined
for all values of o due to various imposed constraints.
At the same time, Ozaktas et al. proposed two innovative
approaches for obtaining the DFRFT through sampling
of the FRFT [58]. Both of the methods are based on the
idea that we can manipulate the expression for the FRFT,
such that the form can be appropriately sampled. In
particular, the first method begins to simply by multiplying

the signal, x(t), with a chirp function:

g(t) = exp[—jnt?tan(oe/2))x(t) (34)
followed by a chirp convolution

+00
h(t)=A, / exp[jrcsc(a)(t—1)]g(7) dt 35)
and the last chirp multiplication
F.(x(t)) = exp[—jmt*tan(e/2)]h(t) (36)

The convolution operation in the above equation can be
achieved by sampling g(t), and then performing the con-
volution using the fast Fourier transform (FFT). Hence,
using the FFT for convolution, provides us with samples of
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F,(x(t)). However, one has to keep in mind that the
bandwidth and time-bandwidth product of g(t) can be as
large as twice that of x(t). Thus, we need to sample g(t) at
the rate twice the original sampling rate used for x(t), which
means that the samples of x(t) need to be interpolated.
Specifically, assuming that x and X, denote column vectors
with N elements containing the samples of x(t) and its
DFRFT, respectively, then, in a matrix notation, the above
procedure can be given as

=F,x=DAHAJx (37)

where D and J are matrices representing the decimation
and interpolation operation, A is a diagonal matrix
that corresponds to chirp multiplication, and H corre-
sponds to the convolution operation. Eq. (37) provides
the samples of the o-th transform in terms of the samples of
the original signal. This is a desirable property for a
definition of the DFRFT matrix [58]. Very similar results
were obtained in [52] as well. Sample computed FRFTs
for impulse and step functions are shown in Fig. 4. The
second approach, proposed in [58], implements a very
similar principle. However, the authors rewrote the FRFT
into the form:

+ o0
X, = Asexp(jrcot(c)u?) / exp(—j2mesc(out)[exp(jrcot(a)t)x(t)] dt

(38)
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Fig. 4. Theoretical and computed FRFTs of impulse and step functions (x =7 /4): (a)
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Then, the modulated function [exp(jcot(a)t)x(t)] is repre-
sented by Shannon’s interpolation formula:

[exp(jcot(x)t)x(t)] = zN: [exp(]ncot(oc)2 At) (22t>

n=-N

xsinc (ZN (t— m))]

allowing us to obtain the samples of the fractional trans-
form in terms of the samples of the original signal as

N 2
Xy (m) = 2_Ar ; exp (Jn (cot(oc) (2At>

—2csc(0) ——— a A )2 +cot(o) (ZAt) 2) ) X (ﬁ) (40)

whichis a finite summation and At represents the sampling
interval. In a matrix form, the overall procedure can be
represented as

(39)

X, = F;x =DKJx 41)
where
2
K(m,n) = 2At (]n (cot(ot) (ZAt)
2
—2csc(oc)( ) 5 +cot(x) (2At> >> 42)

for |n| and |m| < N and where A, is a constant.

0.1
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0.06

0.04
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1.5

) the magnitude of theoretical FRFT of the impulse function; (b) the

magnitude of computed FRFT of the impulse function; (c) the magnitude of theoretical FRFT of the unit function and (d) the magnitude of computed FRFT of

the unit function.
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However, both presented cases assumed that the WD of
x(t) is zero outside an origin-centered circle of diameter
equal to the sampling period [58]. Therefore, there might be
several DFRFT matrices providing the same result within
the accuracy of this approximation. Nevertheless, if the
signal energy contained within this circle is approaching to
the total signal energy, we know that all of these matrices
provide more accurate results. In other words, signals can
be recovered from their transforms only within some
approximation errors [59,60].

In order to alleviate some of the problems associated
with the DFRFT proposed in [58], a new type of DFRFT,
which is unitary, reversible, and flexible, was proposed in
[56]. In addition, the closed-form analytic expression of
this DFRFT can be obtained. Its performance is similar
to the FRFT and can be efficiently calculated by FFT.
Assuming that the samples of the input function, x(t),
and the output function X, (u) of the FRFT are obtained by
the interval At, Au as

y(m) =x(nAt),  Yy(m)=X,(mAu) 43)

where n=—-N, —N+1,...,Nand m=-M, —M+1,...,M, then,
the following two formulas of the DFRFT are in order:

Ya(m) =4 /%exp (]i cotamzAu2>

N )
x Z exp (-j 22&1"; ) exp (Jf cotomzAt2>y(n)

n=-N
(44)

when sina > 0 (« € 2Dn+(0,7),D € Z), and

Y (m) =4 /%ﬁosaexp <% cotocm2Au2>

N . 2nnm j
x exp (j ) exp (— cotomzAtZ)y(n)
ZN 2M+1 2

n=—

(45)

when sinx <0 (« € 2D+ (—m,0),D € Z). Additionally, the
constraints that M > N (2N+1, 2M+1 are, respectively, the
number of points in the time and frequency domains) and

AuAt =2mr|sina|/(2M +1) (46)

must also be satisfied. We note that when M=N and
a=m/2(—7r/2), Eqs. (44) and (45) become the DFT or
IDFT. We also note that when o =Dn (D € Z), there is no
proper choice for Au and At that satisfies the inverse
formula, and thus, we cannot use the above as the defini-
tion of the DFRFT. In fact, in these cases, we can just use the
following definitions:

Y,(m)=y(m) when o=2Dn 47

Y,(m)=y(-m) when «=@2D+1)n (48)

The inverse DFRFT is simply a Hermitian forward DFRFT
with —a. This DFRFT is efficient to calculate and implement.
Because there are two chirp multiplications and one FFT, the
total number of the multiplication operations required is
2P+ (P/2)log,P, where P=2M+1 is the length of the output.
The authors also claimed that this DFRFT also has the lowest
complexity among all types of DFRFT that still work similarly
to the continuous FRFT [56]. However, it does not match the

continuous FRFT and lacks many of the characteristics of the
continuous FRFT. For example, it is difficult to filter out the
chirp noise with this type of DFRFT [56].

3.2. Linear combination-type DFRFT

One of the first approaches for the DFRFT was proposed
by Dickinson and Steiglitz [61]. In their paper, the DFRFT
was derived by using the linear combination of identity
operation (Fo), discrete Fourier transform (F./;), time
inverse operation (F;), and the inverse discrete Fourier
transform (F3;/;). In other words, the fractional matrix
operator, F,, for 0 <o < 7/2 was given as [61]

F,= 23: BiFin 2 (49)
k=0

where
13 (20

B = 71; exp []nl<? fk> /2} (50)

for 0 <k <3. In particular, it has been shown that the
operator defined by (49) is unitary [62]. In other words,

F/=F,'=F, (€29

F.F_, =1 (52)

Furthermore, the operator satisfies the angle additivity
property [62]:

Foq Fozz = Fozl + 0o (53)
and angle multiciplity property [62]:
F' = Fingy (54)

o

It has also been noticed that the operator is periodic in the
parameter o with a fundamental period 27 [62].

This type of the DFRFT corresponds to a completely
distinct definition of the fractional Fourier transform.
However, the main problem is that the transform results
will not match to the continuous FRFT [60]. In other words,
it is not the discrete version of the continuous transform
[63].

3.3. DFRFT based on eigenvectors

A possible approach for the DFRFT is based on searching
the eigenvectors and eigenvalues of the DFT matrix and
then computing the fractional power of the DFT matrix
(e.g.,[59,60,63,64]). This type of the DFRFT was proposed to
combat the issues associated with previous implementa-
tions such as a lack of unitarity and index additivity
(e.g., [57,58]) and the fact that most of these provide a
satisfactory approximation to the continuous transform. In
particular, the DFRFT is based on the eigendecomposition
of the DFT kernel matrix [60]. The transform kernel of the
DFRFT can be defined as

Fsz/n :UDZa/nU (55)
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r_'o exp(—jkoyuul  for N odd

Fao/n =14 Y% exp(—jkoywul for N even (56)
+exp(—jNoyuyul,

where U=[ug u; ...uy_1], when N is odd, and U=[uq u,
...uy_» uy] when N is even. u, is the normalized eigen-
vector corresponding to the k-th order Hermite function
and Dy, is defined as the following diagonal matrix:

Dy, /n = diag(exp(—j0),exp(—jov), . . . ,eXp(—ju(N—2)),
exp(—joN—1))) (57)
for N odd and

D34/ = diag(exp(—j0),exp(—jo), ... ,exp(—jo(N—2)),exp(—joN))
(58)

for N even. In order to ensure orthogonality of the DFT
Hermite eigenvectors (uy), the Gram-Schmidt algorithm
(GSA) or the orthogonal procrustes algorithm (OPA) can be
used [60]. The GSA minimizes the errors between the
samples of the Hermite functions and the orthogonal DFT
Hermite eigenvectors. On the other hand, the OPA mini-
mizes the total errors between those samples. It should be
also pointed out that the main difference between the
approach proposed in [60] and similar approaches pro-
posed (e.g., [59,63,64]) is found in the obtained eigenvec-
tors in previous contributions, in that they were just
discrete Mathieu functions [60]. Although the Mathieu
functions can converge to Hermite functions, the conver-
gence for the eigenvectors obtained in previous approaches
are not so fast for the high-order Hermite functions by the
linear mean square error criterion [60]. Additionally, the
authors investigated the relationship between the FRFT
and the DFRFT and found that for a sampling period equal
to \/27m/N, the DFRFT performs a circular rotation of the
signal in the time-frequency plane [60]. However, the
DFRFT becomes an elliptical rotation in the continuous
time-frequency plane for sampling periods different from
v/2m/N [60]. Therefore, for these elliptical rotations an
angle modification and a post-phase compensation in the
DFRFT are required to obtain results similar to the con-
tinuous FRFT [60]. This approach has been extended to the
so-called multiple-parameter discrete fractional Fourier
transform (MPDFRFT) [65,66]. In fact, the MPDFRFT main-
tains all of the desired properties and reduces to the DFRFT
when all of its order parameters are the same.

A similar approach to [60] has been proposed in [67].
However, authors in [67] believe that the discrete time
counterparts of the continuous time Hermite-Gaussians
maintained the same properties, since these discrete time
counterparts exhibited better approximations than the
other proposed approaches [68]. In order to resolve this
issue about the approximation of Hermite-Gaussian func-
tions, a nearly tri-diagonal commuting matrix of the DFT and
a corresponding version of the DFRFT was proposed in [69].
Most of the eigenvectors of this proposed nearly tri-diagonal
matrix result in a good approximation of the continuous
Hermite-Gaussian functions by providing a smaller approx-
imation error in comparison to the previous approaches.

Using the findings presented in [60,67], methods for
parallel and cascade computations of DFRFT are proposed

in [70]. By this new method, the DFRFT of any angle can be
computed by a linear combination of the DFRFTs with
special angles [70]. The parallel method is suitable for the
signal whose DFRFT in special angles are already known.
The chirp signal detection is a common one, and the
cascade method has a regular structure; therefore, it is
very suitable for VLSI implementation.

However, it should be noted that these types of DFRFTs
lack the fast computation algorithm and the eigenvectors
cannot be written in a closed form.

3.4. Other approaches

The FRFT can also be realized by the quadratic phase
transform (QPT) [71,72], which is defined as

+o0

QP(,v) = / X(ye I de (59)

—o0

Compared with (1), the FRFT can be computed by mapping
variables y and v of the QPT onto o and u of the FRFT. With
this equivalence of implementation, a number of fast
algorithms for the QPT can be used to compute the FRFT
[71,73-75]. Specifically, the fast algorithms proposed in
[71] make use of the concept of decimation-in-time
decomposition along the ¢ and v domain. These algorithms
can reduce the numbers of both complex multiplications
and additions by a factor 2log, N, where N is the number of
samples in the time domain. By further exploiting the
periodic and symmetric properties of the QPT and with the
radix-2 decimation-in-frequency principle, a computation-
ally more efficient algorithm was proposed in [73].
Recently, the above fast algorithms are also extended to
real value sequences [75], which are useful in voice, audio,
and image signal analysis.

Several other approaches for obtaining the DFRFT were
proposed in the literature. Here, we only provide a brief
overview of these techniques. For complete details, a reader
should refer to these contributions. Using the group theory,
authors in [76] proposed that the DFRFT can be obtained as the
multiplication of DFT and the periodic chirps. This DFRFT
satisfies the rotation property on the WD, and the additivity
and reversible property. However, this type of DFRFT can be
derived only when the fractional order of the DFRFT equals
some specified angles. As well, when the number of points is
not prime, it will be very complicated to derive. Using Chirp-Z
transforms, a fast numerical algorithm for the DRFT was
proposed in [77]. This method allows free choice of resolutions
in both fractional Fourier spaces, simultaneous data-peeping in
any region, and easy implementation. Furthermore, the
authors argued that their method is easier to implement in
comparison with the method proposed in [61], while main-
taining the same computational efficiency.

4. Applications

In this section, we review the practical applications of
the FRFT and its discrete counterpart as a signal processing
tool. Nevertheless, our literature review showed that
applications are very scarce beyond optics. We anticipate
additional publications regarding practical applications of
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the FRFT are bound to appear. For example, we foresee an
increased number of applications of the FRFT based time-
frequency representations in speech and music processing,
biomedical signal processing, and mechanical vibrations
analysis. Some problems stemming from such applications
demand such advanced time-frequency representations
(e.g., spectrogram, WD), since these classical time-fre-
quency tools do not provide a framework sufficient for a
comprehensive analysis [2].

It should be also mentioned that in this paper we devote
more space to newer applications of the FRFT such as
watermarking and communications. Other contributions
(e.g., [1,9]) described either more traditional applications
such as filtering and signal recovery or only briefly covered
different applications. Our goal is to emphasize that the
FRFT is a valuable tool in many various applications.

4.1. Filtering

The idea of using the FRFT for fundamental signal
processing procedures such filtering, estimation and
restoration is particularly interesting for applications
involving optical information processing [78,79]. In several
publications the concepts of filtering, estimation and
restoration of signals in fractional domains were developed
for these applications, revealing that under certain condi-
tions one can improve upon the special cases of these
operations in the conventional space and frequency
domain. Furthermore, the FRFT can be applied to the
problem of time-varying filtering of non-stationary, finite
energy processes both in continuous-time and discrete-
time frameworks [80]. Filtering in fractional Fourier
domains may enable significant reduction of the mean
square error in comparison with ordinary Fourier domain
filtering. In particular, the optimum multiplicative filter
function that minimizes the mean square error in the «-th
fractional Fourier domain was derived in [80]. Similarly, a
novel fractional adaptive filtering scheme was introduced
[81], and simulation results showed that adaptive filtering
in the fractional domain is superior in comparison to its
time domain counterparts.

a

4.2. Watermarking

The FRFT and its counterparts have not be fully
exploited in the field of the multimedia due to several
plausible reasons. Firstly, several well-established trans-
forms are already used in the multimedia applications (e.g.,
DCT, DST, Walsh, DWT, DFT). Secondly, multimedia appli-
cations are commonly subject to some sort of standardiza-
tion. Also, a relatively short history of the fast algorithms
for the FRFT realization and a short period for the detailed
study of the FRFT properties limit its wider usage in this
area. The third reason is that this transform with a
relatively long history in the other signal processing related
disciplines, is still relatively unknown in the multimedia
systems. However, this situation is gradually changing
with more papers focusing on this transform. Here, it is
worthwhile mentioning the application in the digital
watermarking (e.g., [82-84]). The digital watermarking is
a technique used for the copyright protection of digital
multimedia data [85]. A desired ability for these techniques
is a creation of a large number of watermarks that can be
embedded in multimedia data without perceptible degra-
dation of host data. Then, the FRFT domains offer more
flexibility since it has been shown that the FRFT water-
marks with various angles have small correlation. Usage of
two angles in the 2D FRFT offers significant possibility to
hide more different watermarks in images than the stan-
dard DFT or DCT-based domains.

This is illustrated with Figs. 5 and 6 taken from [82]. In
this figure the original Lena image used as a common test
example is given in Fig. 5(a) while the watermarked image
is given in Fig. 5(b). Watermark is embedded for angles
oq = oy = 0.3757. Detection of watermarks for 1000 water-
mark keys is demonstrated in Fig. 6(a) where upper line
corresponds to detection in the watermarked image while
lower line corresponds to detection in non-watermarked
image. From spread between these two lines we can
conclude that watermark detection is reliable. Fig. 6(b)
demonstrates a situation when a search with the proper
watermark key is performed around proper angles. It can
be seen that the watermark can be detected only if the
angle under which the watermark is embedded is known.
This is a quite important fact and it helps in increasing the

Fig. 5. Watermarking using the FRFT: (a) original image and (b) watermarked image.
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Fig. 6. Analysis of the detector: (a) statistical analysis of detecting watermark signal in watermarked and non-watermarked image and (b) detection of

watermark signal using different transformation angles.

number of watermarks that can be embedded within
multimedia data. A practically useful scheme for the
FRFT based watermarking is recently proposed in [86]. In
particular, the impact of the noise and other errors is
severely reduced on the FRFT coefficients by pre-filtering
these coefficients yielding a scheme that is more robust to
various attacks.

Similarly, a watermarking scheme in the space/spatial-
frequency domain has been proposed in [87]. This
watermarking technique uses 2D chirp signals that are
well concentrated in the joint space/spatial-frequency
domain, but not in the space or spatial-frequency domain
only. Therefore, this concept of watermarking provides
results robust to the standard filtering, since watermarks
are concentrated in the joint space/spatial-frequency
domain [87].

Both of these techniques are closely monitored and
followed by numerous researchers [88-97]. The main
obstacle in further applications of these techniques is the
complexity that can be reduced with various previously
described fast realization strategies. In addition, the avail-
ability of the FRFT fast realizations will lead to numerous
implementations of the FRFT and related transforms in
multimedia.

4.3. Radar applications

A couple of techniques related to the FRFT have been
recently used for focusing SAR/ISAR images (e.g., [98,99]).
This technique is commonly referred to as the LPFT in the
related literature. Two forms of the adaptive LPFT-based
technique for focusing ISAR images are proposed in [100].
The focusing is performed without assuming any particular
model of a target’s motion. Therefore, these versions of the
LPFT can be applied for any realistic motion. The first
technique is based on knowing that, for monocomponent
and multicomponent signals with similar chirp-rates, a
single chirp-rate parameter can be estimated for all
components. The ISAR image is then focused by using
the estimated value of signal parameters obtained through
the LPFT calculation. For multicomponent signals with

different chirp-rates, a sum of the weighted LPFT is used.
If the signal’'s components have significantly different
chirp-rates, the estimation of these parameters should be
performed separately for each component. Moreover, the
obtained estimate is additionally refined by combining
estimations obtained for close reflectors. For targets with
very complex motion patterns, segmentation of the radar
image in regions-of-interests is performed. The adaptive
LPFT is calculated for each region in order to form focused
ISAR image. Adaptive parameters are obtained by using a
simple concentration measure. Here, we demonstrate test
image of the B727 plane given in Fig. 7(a) (the figure is
taken from [100]). Focusing of the radar image is performed
for each cross-range parameter and the focused image is
given in Fig. 7(b). Estimated chirp-rate parameters (angles
in the FRFT terminology) are depicted with dashed lines in
Fig. 7(c). Additional improvements have been achieved
when these chirp-rates are filtered with median filter
(thick line). Then, the radar images focused with the
filtered chirp-rate as depicted in Fig. 7(d).

A similar approach is proposed in [101], but the chirp-
rate is estimated by using contrast of the LPFT-based ISAR
image. Moreover, a modulus of the target effective rotation
vector is calculated from the obtained estimation. A
quantitative analysis of the signal-to-noise ratio (SNR)
for the LPFT applied in the ISAR imaging is presented in
[102]. It has been shown that the LPFT-based methods for
focusing ISAR images can achieve a significantly higher
output SNR than those based on the STFT.

Focusing of the SAR images is usually performed by
estimating parameters of a received signal. A technique for
applying the product higher-order ambiguity function
(PHAF) for estimating parameters of the radar signal and
focusing SAR images is proposed in [103]. Moving target
focusing can be performed by this technique for some
specific scenarios. More precisely, the obtained SAR image
will be focused only when one target exists in a range bin,
or when all targets in one range bin have similar motion
parameters. Otherwise, this technique fails to achieve high
concentration of each target simultaneously. In order to
overcome this drawback, an algorithm for separating signal
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Fig.7. B727 radarimage: (a) results obtained by the FT-based method; (b) adaptive LPFT method; (c) adaptive chirp rate (dotted line), filtered adaptive chirp
rate (light solid line), linear interpolation of filtered data (bold solid line) and (d) adaptive LPFT with interpolated data. e, and wp, represent the range and the

cross-range, respectively.

components corresponding to targets with different
motion parameters is applied in [104] where the LPFT-
based technique is used for focusing each component. The
drawback of the LPFT-based technique, applied in this
manner, is high computational complexity needed for
selection of chirp-rate that produces the best concentra-
tion. Therefore, an algorithm for the automated selection of
phase parameters used for the LPFT calculation is proposed
in [105]. In this algorithm, an adaptive set of chirp-rates is
formed for each unfocused target. When one or more
unfocused targets are detected in a range, the PHAF is
evaluated and the position of its maximum is used for the
coarse estimation of chirp-rate. Further improvement of
the obtained estimate is performed by using a fine search in
the region around the chirp-rate obtained from the coarse
search. The number of chirp-rates in the fine search stage is
rather small (usually not larger than several tens) which
yields a significant decrease in the computational complex-
ity with respect to the technique proposed in [104] (which
requires hundreds or thousands). In addition, a procedure
for the third-order phase compensation is applied in the
proposed algorithm without a significant increase of the
calculation burden. In[104-106] it has been shown that the

LPFT-based methods for focusing SAR images are more
robust to the additive noise influence than the STFT radar
imaging techniques.

Here, we have borrowed figure from [105] where the
SAR image of several moving and stationary targets is
shown (Fig. 8(a)). It can be seen that the moving targets
have seriously spread components. Alternative tools such
as a technique called the S-method [107] are unable to
separate overlapping targets (Fig. 8(b)). The LPFT technique
with predefined set of the chirp-rates gives significantly
improved results as shown in Fig. 8(c). However, the
procedure proposed in [105] based on the LPFT with
automatic selection of the chirp-rate parameters, produces
highly focusing of all considered targets (Fig. 8(d)).

4.4. Communications

Traditional multicarrier (MC) systems are designed
with the DFT based schemes. The main representative of
these techniques is the orthogonal frequency-division
multiplexing (OFDM). However, for doubly selective chan-
nels (channels with selectivity in both time and frequency)
this technique produces non-satisfactory results. Martone
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Fig. 8. Simulated SAR image of seven target points obtained by using: (a) 2D FT; (b) adaptive S-method; (c) LPFT with predefined set of chirp rates and

(d) proposed LPFT.

Table 4
A comparison of two techniques.

Scenario En-route Arrival/ Taxi Parking
takeoff

AFT-MC vs. Significantly Slightly Slightly Equal

OFDM better better better

published a corner-stone paper where the discrete FRFT is
used instead of the DFT in multicarrier systems [108]. For
channels with fast variations with available the line-of-
sight component (usually associated with mobile stations
mounted on high speed carriers and/or non-urban envir-
onments) this scheme significantly outperforms DFT-based
counterparts. Performance of this technique is significantly
improved since the time-frequency plane can be adjusted
(rotated) in a way to compensate undesired modulation of
the signals introduced by high velocity of participants and/
or by multipath component shifted from the line-of-sight
components. This technique is generalized for general
linear canonical form of the transform (affine Fourier
transform—AFT) in [109]. This form has shown an
improved flexibility with respect to the FRFT-based
scheme. These chirp based modulations and associated
AFT schemes have been identified as a suitable basis for
multicarrier communications such as aeronautical and
satellite [110]. Table 4 provides a comparison between
the AFT-MC technique and the standard OFDM for four
typical scenaria that can be observed in the case of the
aeronautical channels. The best results for the AFT-MC
techniques are observed for en-route scenario while in the

worst case for the parking scenario, the AFT-based tech-
nique behaves the same as the OFDM. Then, in our opinion
the AFT technique are important candidates for novel
digital standards for the aeronautical communications
with solved problem of the fast realizations of the AFT
(FRFT).

Similarly, other contributions discussed the application
of the FRFT in communication systems. In a very recent
publication (e.g., [111]), a minimum mean squared error
receiver based on the FRFT for MIMO systems with space
time processing over Rayleigh faded channels was pre-
sented. The numerical analysis of the proposed receiver
showed improved performance; outperforming the simple
minimum mean squared error receiver in Rayleigh faded
channel. Furthermore, chirp modulation spread spectrum
based on the FRFT was recently proposed for demodulation
of multiple access systems [112]. The numerical analysis
showed that the FRFT based receiver is more flexible and
efficient system for multiple access by reducing the
designing complexity of the system. The authors also
argued that receivers based on the FRFT are more sensitive
than earlier coherent receivers for chirp signals.

4.5. Compression

An interesting application of the FRFT to compression
can be found in [113]. In particular, the contribution dealt
with image compression and found that even though the
presented method yielded inferior results in comparison to
commonly available compression algorithms, there is still a
room for improvement. The authors argued that their
method is very basic and further improvements can be
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achieved by combining with other techniques. The concept
of compression using the FRFT has been further extended in
[114], where authors proposed a scheme for signal com-
pression based on the combination of DFRFT and set
partitioning in hierarchical tree (SPIHT). The application
of the scheme to different types of signals demonstrated a
significant reduction in bits leading to high signal com-
pression ratio. The results were further compared with
those obtained with the discrete cosine transform. Hence,
the DFRFT is shown to be more suitable for compression
than the DCT, especially in terms of quality of recon-
structed signal and the percentage root-mean-square
difference. There is no need to encode the error signal
and send along with the encoded DFRFT coefficients, as the
dynamic range of error signal is too small.

4.6. Pattern recognition

Given that the FRFT provides an extra parameter (e.g.,
the rotation angle) in comparison with the ordinary Fourier
transform, the FRFT also provides additional degrees of
freedom in pattern recognition systems. For example, the
FRFT was used as a pre-processor for a neural network
[115]. The use of fractional based pre-processing resulted
in an improved performance comparing to both no pre-
processing and ordinary Fourier transform pre-processing.
Also, the fractional based pre-processing resulted in a
substantial reduction of classification and localization
error. While use of the fractional Fourier transform
increases the cost of the training procedure, the improve-
ments achieved with its use come at no additional routine
operating cost.

Furthermore, it has been also shown that pattern
recognition methods based on matched filtering can be
generalized by replacing the standard Fourier operations
by fractional Fourier operations [116]. However, these
systems become time (or space) varying systems.

4.7. Cryptography

The FRFT can also be used in the field of cryptography
[117-121]. For example, a 2004 US patent invented a
cryptographic approach [117]. At the encryption side, a
user first selects at least four parameters including an angle
of rotation, a time exponent, a phase, and a sampling rate as
the encryption key. Then, more than one modified FRFT
kernels corresponding to the encryption key are selected
and multiplied with the input signal. On the other hand, a
reverse procedure with respect to the encryption process is
used for decryption.

The modified FRFT (e.g., [118]) along with the double
random phase encoding technique has been successfully
applied for encrypting digital data. Specifically, using the
double random phase encoding in the multiple-parameter
FRFT domain, this encryption method enhances data
security because the order parameters of the modified
FRFT can be exploited as extra keys for decryption. How-
ever, this encryption scheme has shown to be linear [119].
Hence, it is insecure because a known plaintext attack can
break this scheme, which is equivalent to solving a set of
linear equations [119]. It is also shown that the current

standard algorithms such as AES [122] outperform the
above system in terms of both encryption speed, band-
width, and storage requirements.

Recently, a random discrete FRFT, proposed in [123],
exhibits an important feature that the magnitude and
phase of its transform output are both random. This
random discrete FRFT is also first applied to the image
encryption to show its potentials.

4.8. Fractal signal processing

The FRFT also found its application in processing of
fractal signals. For example, the FRFT was used for the
determination of the main parameters of fractals in [124].
In [125], a FRFT based estimation method was introduced
to analyze the long range dependence in time series. In
particular, the FRFT was used for estimation of the Hurst
exponent. The results have shown that the FRFT estimator
can achieve a reliable estimation of the Hurst exponent
when compared to some other existing estimation meth-
ods, such as wavelet-based method and a global estimator
based on dispersional analysis.

4.9. Other applications

The FRFT can be useful in terms of differential equations
[7,126], especially for solving these equations. For example,
the FRFT of a function x(t) can be considered as a solution of
a differential equation, where x(t) can be considered as the
initial condition of the equation. In particular, Namias
solved several Shrodinger equations using this assumption
[7]. Further examples can be found in [1,7,126]. The FRFT
can be also shown to be a particular case of the evolution
operators [127]. Further details about the application of the
FRFT to differential equations can be found in [128].

An application of the FRFT to computer tomography was
also recently discussed [129]. In particular, a two-dimen-
sional FRFT has been used to characterize the effect of
scattering [129].

The FRFT has also been applied to transient motor
current signature analysis (TMCSA) [130], due to the
shortcomings of Fourier transform for such an analysis.
This paper also proposed the optimization of the FRFT to
generate a spectrum where the frequency-varying fault
harmonics appear as single spectral lines and, therefore,
facilitate the diagnostic process.

5. Conclusion

The FRFT is a powerful mathematical transform that
generalizes the ordinary Fourier transform through the
order parameter o. As such, it has been rediscovered in the
literature several times. In this paper, we provided an
overview of the FRFT from the signal processing point of
view. In particular, our goal was to attract signal processing
practitioners to this mathematically eloquent concept and
depict its advantages. In order to do so, the paper is
thematically divided into three topics. In the first part,
we presented the definition of the FRFT and tied it to other
mathematical representations. The second part of the
paper covered various practical realizations of the FRFT,
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while the practical applications of the FRFT were discussed
in the third part of the paper. The conclusions stemming
from each part were as follows:

e Besides its ties to the ordinary Fourier transform, the
FRFT can be further related to various time-frequency
transforms. In particular, we showed the direct relation-
ship between the AF, the WD and the FRFT. This
relationship enables us to relate the FRFT to a wide
class of time-frequency transforms. Furthermore, we
showed that the FRFT can be considered as a special case
of the second-order LPFT and LPP. Also, the FRFT can be
considered as the special case of the LCT. Such a
relationship provides a direct generalization link
between the FRFT and many higher-order/affine math-
ematical transformations. In particular, we outlined the
connection between the FRFT and L-WD for the first
time in the literature. Future contributions in this theme
will include a further understanding of the FRFT and its
ties to other mathematical transforms.

e The digital realizations of the FRFT can be divided into
three major streams. One stream is represented through
direct sampling of the FRFT. It is the least complicated
approach, but these discrete realizations could lose
many important properties of the FRFT. Furthermore,
the kernel associated with the FRFT can introduce very
fast oscillations that require excessively large sampling
rates. A second stream relies on a linear combination of
ordinary Fourier operators raised to different powers.
Nevertheless, these realizations often produce an out-
put that does not match the output of the continuous
FRFT. The third stream approaches the discrete realiza-
tions based on the idea of an eigenvalue decomposition.
The realizations obtained through this stream tend to
closely resemble the representations obtained by the
continuous FRFT. However, we should point out that the
major drawbacks of this approach are that they cannot
be written in a closed form and might have computa-
tional costs. Lastly, we also outlined other approaches

Table 5
References sorted according to their topics.

Topics Refs.

Theoretical contributions

Introductory and review contributions [1,4-15]
FRFT and time-frequency representations [2,3,16-44]
FRFT and linear canonical transform [1,6,45,46]
DFRFT through sampling of FRFT [14,50-58]
Linear combination-type DFRFT [61,62]
DFRFT based on eigen- vectors [59,60,63-70]
Other approaches for DFRFT [71-77]

Applications
Filtering [78-81]

Watermarking [82-84,86-97]
Radar applications [98-106]
Communications [108-112]
Compression [113,114]
Pattern recognition [115,116]
Cryptography [117-123]
Fractal signal processing [124,125]
Other application [7,126-130]

that appeared in the literature. We specifically sug-
gested that potential realizations of the FRFT could be
achieved with the so-called quadratic phase transform.
Anticipated contributions in this field need to deal with
issues associated with the current schemes.

e The number of publications discussing practical appli-
cations of the FRFT has been steadily rising. In particular,
we have witnessed a strong expansion of the FRFT in
several fields, including watermarking, radar applica-
tions, and wireless communications. Furthermore, we
also have the FRFT present in other fields as well (e.g.,
fractal signal processing, pattern recognition, filtering).
The main advantage is that the FRFT-based schemes
increase processing accuracy. For example, a group of
authors described an adaptive filtering scheme in a
recent contribution. The presented results showed a
superior performance in comparison to its time domain
counterparts. Similar trends have been observed in
multimedia signal processing, where the FRFT has
been used for watermarking. In particular, the water-
mark could be detected only if the angle under which
the watermark was embedded was known. This enabled
us to increase the number of watermarks embedded
within multimedia data. From these past contributions,
we expect an expansion of FRFT-based methods in
different applications to dominate the future contribu-
tions. In particular, we expect to see increased applica-
tion of the FRFT based time-frequency representations
in speech and music processing, biomedical signal
processing and mechanical vibration analysis. Problems
stemming from such applications require the employ-
ment of such advanced time-frequency transforms.

Overall, the paper provided a compact summary of the
recent contributions regarding the FRFT (for convenience,
Table 5 contains reference sorted according to their topics).
The FRFT is a very powerful tool and has been applied to
many fields. Further research and applications of existing
schemes will increase in the near future.
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